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Abstract

Emerging infectious diseases are major threats to amphibian biodiversity. Significant advances in our understanding 

of these diseases have been made with respect to the pathogens themselves, how amphibian hosts respond 

to and defend against pathogens, and the environmental conditions that can influence the course of disease. 

Here, we review recent advances in our understanding of infectious diseases of amphibians related to these three 

components – pathogen, host, and environment, and identify information gaps as research priorities. In particular, 

we highlight current diagnostic tools, we focus on ecological dimensions with relevance to development effective 

management strategies and review current proposed intervention strategies. We also discuss human dimensions of 

amphibian diseases with a focus on management and policy actions that can confront these threats and potentially 

minimise disease-driven declines at local and global scales.

Introduction

Pathogens and parasites including viruses, bacteria, 

protozoa, fungi, helminths and arthropods infect 

amphibians (Densmore & Green, 2007). Our knowledge of 

amphibian diseases and how to diagnose and treat them 

has improved dramatically in recent years, in part due 

to efforts of pathologists and veterinarians working with 

captive zoo collections (Wright & Whitaker, 2001), and 

work of molecular biologists and ecologists (e.g. Byrne 

et al., 2017; Grogan et al. 2018; Rebollar et al., 2016). 

Infectious diseases are a natural part of any functioning 

ecosystem, and may fluctuate in natural cycles, leading 

to constraints between transmission and virulence fuelled 

by natural selection (Boots & Sasaki, 2003). Pathogens 

do not generally make their hosts go extinct, because 

that would also result in extinction of the pathogen, but 

exceptions may occur (de Castro & Bolker, 2005).
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Emerging wildlife diseases are usually caused by 

introduced pathogens or parasites that spread to 

areas inhabited by naive hosts that do not have 

natural defences and thus leading to population 

declines (Langwig et al., 2015). Chytridiomycosis-

related declines have led to the disappearance of 

many amphibians worldwide, primarily in places 

that have no evolutionary history with the disease, 

although the exact number of species affected 

remains controversial (Lambert et al., 2020; Scheele et 

al., 2019a). Indeed, proving disease-induced declines 

is a challenging task; simply surveying for a pathogen 
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Figure 6.1: Schematic representation of specific elements of the disease triangle a). Disease may develop where conducive factors of the 
environment (abiotic, biotic, human dimensions), pathogen, and host overlap b). Source: Inspired by Fisher & Garner (2020).
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or disease in a declining population is not sufficient 

to infer causality (Pessier, 2017). The gold standard 

for demonstrating disease-related declines involves 

collecting population data prior to emergence, 

estimating disease prevalence, observing disease 

signs and population effects or mortality, isolating the 

pathogen, and fulfilling Koch’s postulates (Martel et 

al., 2013). These steps require substantial resources 

not normally devoted to wildlife taxa and may 

partly explain why it took so long for diseases to be 

connected to ‘enigmatic amphibian declines’ (Collins, 

2010; Collins & Crump, 2009).

Many factors influence the course of disease related 

to the pathogen, the host and the environment 

(Figure 6.1). We consider recent advances in our 

understanding of infectious amphibian diseases 

related to these three components as well as human 

dimensions (Figure 6.1). We identify information 

gaps as research priorities for the revised Amphibian 

Conservation Action Plan.

Status update

Pathogen

A pathogen is a microscopic infectious viral, bacterial 

or fungal agent that causes disease in a host, and 

various macroscopic parasites such as helminths, 

protozoa and arthropods also cause well-known 

diseases and illnesses in amphibians (Densmore & 

Green, 2007). General veterinary approaches have 

been developed for diagnosing and treating various 

amphibian diseases (Densmore & Green, 2007; Wright 

& Whitaker, 2001), but much attention has focused 

on the ecology of diseases and context-dependent 

responses to emerging diseases (Langwig et al., 

2015).

Emerging amphibian diseases

In the last 15 years, understanding of emerging 

amphibian pathogens has grown immensely 

(Table 6.1). Ranavirus emergence in naive 

amphibian populations has been associated with 

steep amphibian population declines of multiple 

species in Europe (Price et al., 2014; Teacher, 

Cunningham & Garner, 2010), and South America 

(Ruggeri et al., 2019). Whereas ranaviruses have 

been documented globally, their population-level 

impacts in many places have not yet been 

adequately assessed (Brunner et al., 2021; Duffus 

& Cunningham, 2010; Duffus et al., 2015). Three 

ranavirus species are known to affect amphibians, 

Ambystoma tigrinum virus (ATV), Common midwife 

toad virus (CMTV) and Frog virus 3 (FV3) (Chinchar 

et al., 2017), but FV3 and CMTV are known to 

recombine as chimeric ranaviruses that have 

Table 6.1: Known emerging amphibian infectious pathogens, and their characteristics

Emerging Infectious 
Pathogens Type Competent hosts Known Distribution

Ranavirus Virus Amphibians, Reptiles, Fish Global

Batrachochytrium 

dendrobatidis

Fungus Amphibians, mortality associated with 

disease concentrated in the Americas 

and Oceania

Global

Batrachochytrium 

salamandrivorans

Fungus Primarily salamanders, with alternate 

amphibian hosts

Asia (Native range)

Europe (Invasive)

Perkinsea Protist Amphibians, primarily tadpoles US, Europe, Mesoamerica

Elizabethkingia miricola Bacteria Anurans, additional concern as it is a 

zoonotic pathogen (mostly in captive 

and frog farm settings) 

China, Europe, 

Madagascar, possibly global
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increased virulence and pose a large threat to 

wild populations (Peace et al., 2019; Vilaca et al., 

2019). Batrachochytrium dendrobatidis (Bd) was 

described in 1999 (Longcore, Pessier & Nichols, 

1999), but in 2013 a new Batrachochytrium species 

was reported, B. salamandrivorans (Bsal) (Martel 

et al., 2013). Bd has a global distribution (James et 

al., 2015; Olson et al., 2013; Olson et al., 2021a), 

and Bsal has a restricted distribution in Asia, where 

it originates; it is also found in Europe where it 

is invasive and lethally spreading in European 

amphibians, particularly fire salamanders (Beukema 

et al., 2018; Lötters & Vences, 2020; Spitzen-van 

der Sluijs et al., 2016). In the US, a pathogenic 

protist causes severe Perkinsea infections resulting 

in mortality of tadpoles, a potential third emerging 

infectious disease of amphibians (Isidoro-Ayza et 

al., 2017). Elizabethkingia miricola is an example of 

a recently discovered emerging bacterial disease in 

amphibians. This zoonotic pathogen can also affect 

humans and causes meningitis-like symptoms and 

mass die-offs in Chinese spiny frogs (Quasipaa 

spinosa) farmed for food (Hu et al., 2017; Lei et al., 

2019).

Diagnostics and monitoring

Amphibian pathologists have established a growing 

body of diagnostic knowledge that has improved 

our ability to evaluate disease signs and attribute 

them to causative agents that may have historically 

been dismissed as “Red Leg Disease” (Forzan 

et al., 2017; Pessier, 2017). The fact that severe 

Perkinsea infections were only recently discovered 

as a source of amphibian mortality in the US 

is a lesson to retain disciplined vigilance when 

examining new amphibian mortality events and 

declines. Multiple tools are available for detecting 

pathogens, confirming infection and diagnosing 

disease. Histology and microscopy remain the 

primary tool of pathologists forensically examining 

contemporary specimens, especially when 

preservation techniques limit use and consistency 

of DNA-based diagnostic tools, but advances in 

isolation techniques, molecular methods and DNA 

sequencing have expanded our understanding 

of amphibian pathogens, including lineage/strain 

distribution, genetic variation and virulence factors 

(Figure 6.2). However, documenting a pathogen is 

not necessarily indicative that it causes disease 

and decline (Russell et al., 2019). To better under-

stand if a host is susceptible, tolerant or resistant, 

infection must be linked to longer-term clinical 

disease outcomes, such as death, persisting with 

infections, or clearing infections (Figure 6.3).

Disease origins and virulence

The genomics revolution has advanced our 

understanding of the origins of amphibian 

pathogens, the multitude of pathogen geno-

types, and virulence factors that make these 

pathogens deadly. Evidence suggests both Bd 

and Bsal originate in Asia - work that has been 

facilitated by improved isolation methods and 

genome sequencing (O’Hanlon et al., 2018). Our 

understanding of Bd has moved beyond seeing 

it as a singular pathogen to an understanding of 

a complex matrix of genotypes, some of which 

are endemic and others pandemic lineages that 

vary in virulence (Belasen et al., 2022a; Byrne 

et al., 2019; Jenkinson et al., 2016; Rosenblum 

et al., 2013). Bd genotypes have been cultured 

from hotspots, and whole genome sequences of 

globally distributed strains are identified: Bd GPL 

(Global Panzootic Lineage), Bd CAPE (Africa and 

Europe), Bd ASIA 1 (Asia), Bd Asia 2/ BRAZIL and 

Bd ASIA-3 (O’Hanlon et al., 2018. Bryne et al., 

2019). Most cultured Bd isolates belong to the 

Bd GPL lineage (Fisher et al., 2018), and that has 

led to strengthening of our knowledge about GPL 

impacts on amphibians. In Bd infection ‘cold-

spots’ (e.g. Asia and Africa), where prevalence can 

be high, but infection intensity low (Mutnale et al., 

2018; Sreedharan et al., 2023), the probability of 

obtaining pathogen cultures is poor, limiting our 

capacity to adequately understand the emergence 

and epidemiology of chytridiomycosis globally. 

Enzootic genotypes may be dominant in such 

regions and hybridisation of enzootic hypovirulent 

and panzootic hypervirulent Bd strains can 

result in genotypes that show high virulence on 
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Figure 6.2: Diagnostic tools for amphibian pathogens and disease. Diagnostic screening techniques can be applied to museum 
specimens, field-caught individuals as well as environmental substrates (e.g. water). Histological, isolation, molecular and antigen-based 
tools are available, each with their own set of advantages and disadvantages. Histological examination is still the only method capable of 
diagnosing clinical infection and disease, but has from low to moderate sensitivity and is costly. Isolation of pathogens can be difficult, but 
is essential for developing a deeper understanding of pathogens, their ecology, physiology and behaviour. Molecular tools offer non-invasive 
sampling methods and high sensitivity for detecting genetic material of pathogens, but quantitative PCR (qPCR) based methods don’t 
come without important caveats. There can be wide variation in quantification according to laboratory methods making direct comparisons 
across studies difficult. This variation may be attributed to using different standard cultures/strains of Bd, different qPCR cycling parameters 
and molecular techniques, and different DNA extraction techniques (Bletz, Rebollar & Harris, 2015; Brannelly et al., 2020). There has been 
an attempt to standardise across studies using Bd intergenic transcribed spacer (ITS) copy number standards (Longo et al., 2013; Rebollar 
et al., 2017); however, with variation in ITS within the fungal genomes the biological meaning can be skewed (e.g. 1000 ITS copies could be 
equivalent to 2 zoospores if copy number is 500, or 200 zoospores if the copy number is 5). It is additionally important to understand the 
detection limits of molecular techniques like qPCR. Low and inconsistent qPCR positives may be false positives, and mutations in the ITS 
region at the Taqman probe binding site in certain regions, such as Asia, can lead to false negatives (Mutnale et al., 2018). This caveat is 
also true for qPCR methods used to detect ranaviral DNA (Wynne et al., 2020). Development of the lateral-flow assay by Dillon et al. (2017) 
shows some promise; however, this assay lacks specificity (it cross-detects related fungi) and sensitivity (it fails to detect low loads). 
Source: 1Berger et al. 1999, Forzan et al. 2017; 2Olsen et al. 2004, Jerret et al. 2015; 3Ossiboff et al. 2019, Forzan et al. 2019; 4Kriger et al. 

2006; 5Cook et al. 2018; 6Granoff et al.1965, Balseiro et al. 2009; 7Rosenblum et al. 2008, O ‘Hanlon et al. 2018; 8Annis et al. 2004; 9Goka et 

al. 2009; 10Boyle et al. 2004, Bloi et al. 2013, Standish et al. 2018; 11Pinheiro et al. 2012; 12Byrne et al 2019; 13Ghosh et al. 2020; 14Kim et al 

2015; 15Dillon et al. 2017.  
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native hosts (Greenspan et al., 2018). Similarly, 

recombination of ranaviruses can result in 

changes in virulence (Peace et al., 2019; Vilaca et 

al., 2019), while bacteria frequently evolve antibiotic 

resistance, reducing our ability to treat host infec-

tions (Lei et al., 2019). Lineage-specific diagnostics 

as well as genomic tools that don’t require culturing 

can help fill this gap (Ghosh et al., 2021). The ability 

to genotype Bd from swab DNA has given the field 

an invaluable technique to understanding global Bd 

lineage distribution (Byrne et al., 2017).

Cultured isolates, experimental infection trials and 

-omics techniques have also expanded our under-

standing of virulence factors and mechanisms that 

may induce disease. Genomic and transcriptomic 

comparisons of Bd/Bsal as well as enzootic and 

panzootic Bd show us signatures of virulence 

including metalloproteases, serine proteases and 

crinkle-like proteins (Ellison et al., 2017; Farrer 

et al., 2017; McDonald et al., 2020). Further 

understanding about these pathogens will emerge 

as culturing efforts and genomic techniques for Bd 

and Bsal are intensified globally (Fisher et al., 2018).

Future steps & recommendations

Significant gaps in our knowledge of these path-

ogens remain. Greater understanding of hot and cold 

spots for pathogen presence and disease can give 

us a lens into what environmental conditions, host 

properties, and interactions between these allow 

amphibians to survive these diseases in nature and 

in turn guide management for susceptible popula-

tions. Currently, there is no rapid, field-ready test for 

prominent amphibian pathogens. Such diagnostic 

tools could rapidly improve our understanding of 

Highly infected

Low to moderate
infection

Susceptible
or immune

Su
sc

ep
tib

le

to
 in

fe
ct

io
n

Intolerant 
dead

Tolerant

Disease
diluters or
amplifiers

Disease
amplifiers,
reservoirs

Disease
diluters

Not 
infectable

Resistant

Immune

Pathogen
arrival

Clinical
disease

Not infected

Not infected

Time

Figure 6.3: Diagrammatic representation of outcomes for amphibian hosts when exposed to a potential pathogen. Immune refers to 
individuals that cannot be infected. Susceptible refers to individuals that can become infected. Resistant refers to individuals that, once 
infected, exhibit resistance mechanisms that lower or eliminate the infection. Tolerant represents individuals that can survive infection and 
build up high infection loads with little negative impact. Intolerant refers to hosts that exhibit clinical disease and can ultimately succumb 
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pathogen distributions and fill rapid-detection needs, 

while genomic innovations like high-throughput 

sequences can continue to push the bounds of 

pathogen ecology and dynamics globally.

Host

 

Once a pathogen infects a host, the host may survive 

through resistance mechanisms (e.g. the host mounts 

an effective immune response that reduces pathogen 

burden and clears infection), or through tolerance (i.e. 

negative impacts are minimised while the pathogen 

continues replicating and spreading (Figure 6.3)). 

However, if pathogen burdens increase to a level 

resulting in clinical disease, the burden to the host is 

magnified and may result in death if infection is not 

reduced or treated (Figure 6.3). Reviews are available 

for the patho-physiology of Bd (Baitchman & Pessier, 

2013), Bsal (Martel et al., 2013), and ranaviruses 

(Miller et al., 2015).

Host range & susceptibility 

Host range differs between Bd, Bsal, and ranavirus. 

Bd can infect all three amphibian orders (Olson 

et al., 2021a); Bsal is known to infect anurans 

and caudates while disease primarily occurs in 

salamanders (Martel et al., 2014; Stegen et al., 

2017); and ranaviruses infect amphibians, reptiles 

and fishes (Brenes et al., 2014; Duffus et al., 2015). 

Experimental infection of hosts can advance our 

understanding of host-pathogen-environment 

dynamics (Blaustein et al., 2018).

Host life stage also affects infection and disease 

progression. For Bd, larvae are typically tolerant, 

while recent metamorphs and juveniles experience 

higher mortality (Belasen et al., 2022a, Böll et al., 

2012; Garner et al., 2009; Russell et al., 2010). 

Adults vary widely in susceptibility, tolerance, 

and resistance (Figure 6.3). Bsal chytridiomycosis 

has only been documented in post-metamorphic 

amphibians to date. For ranavirus, larvae tend to 

be particularly vulnerable to disease and mortality 

(Duffus, Nichols & Garner, 2014; Hoverman et 

al., 2012), but adults of some species also show 

disease signs (Duffus, Nichols & Garner, 2013).

There is wide variation in disease outcomes across 

host populations, space, and time (Bradley et al., 

2015; Briggs, Knapp & Vredenburg, 2010; Savage 

et al., 2011; Searle et al., 2011). Host susceptibility 

can shift over time as with Bd in South America 

(Becker et al., 2016; Carvalho, Becker & Toledo, 

2017; von May et al., 2018) and Panama (Voyles 

et al., 2018). Although Bd has been implicated in a 

number of species extinctions, several populations 

that were formerly believed extirpated have been 

“rediscovered” by scientists (Abarca et al., 2010; 

Chaves et al., 2014; García-Rodríguez et al., 2012; 

González-Maya et al., 2018; Jaynes et al., 2022; 

Newell, Goldingay & Brooks, 2013; Puschendorf 

et al., 2013; Rodríguez-Contreras et al., 2008; 

Toledo et al., 2023; Whitfield et al., 2017). These 

cases present opportunities to understand what 

contributes to population recovery and mobilise 

this knowledge for conservation and management.

Differential disease outcomes over space and 

time may be related to host and ecological 

factors that mediate host susceptibility to 

infection and disease. Individual host factors 

include host defence mechanisms (e.g. innate 

and acquired immunity), and defence resulting 

associated microbiomes. Ecological factors 

include biotic factors (e.g. dilution effects, 

reservoir species, super-shedders), and abiotic 

conditions that impact host ecology and physi-

ology. Understanding how these factors mediate 

host susceptibility is important for disease 

management and conservation.

Host defence mechanisms

Innate and acquired immunity play a role in 

amphibian pathogen infections, varying across 

host species and environments. Innate immune 

mechanisms comprise the first line of defence 

against infections and show general efficacy for 

a variety of pathogens (Conlon, 2011; Rollins-

Smith, 2009; Smith et al., 2018). Acquired or 
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adaptive immune mechanisms, such as the major 

histocompatibility complex (MHC) pathway and 

T and B cells, provide a more specific pathogen 

response and are linked to both host genotype 

and exposure history. However, Bd can sometimes 

inhibit immune responses, limiting amphibians’ 

ability to mount a robust adaptive response to 

Bd (Fites et al., 2014). MHC Class I molecules 

are hypothesised to mainly be associated with 

immune responses to ranaviruses (Teacher, Garner 

& Nichols, 2009; Wang et al., 2017). MHC II immu-

no-genotype has been associated with suscep-

tibility to Bd (Bataille et al., 2015; Belasen et al., 

2022b; Kosch et al., 2016; Savage & Zamudio, 

2011), ranavirus (Savage et al., 2019), and other 

potentially pathogenic microbes (Belasen et al., 

2019). While immunity in amphibian larvae is 

less well-studied, tadpoles are known to have 

less functionally developed immune systems 

accompanied by immunosuppression through 

metamorphosis, while MHC expression expands 

greatly post-metamorphosis (Grogan et al., 2018).

Advances in molecular technologies, including 

high-throughput sequencing and transcriptomics, 

have deepened our understanding of cellular 

defence mechanisms and immune variation within 

and among host species (Zamudio, McDonald 

& Belasen, 2020). Common Bd response 

mechanisms include skin repair (Ellison et al., 

2014a; Eskew et al., 2018; Poorten & Rosenblum, 

2016) and innate and acquired immune activation 

(Ellison et al., 2014b; Ellison et al., 2017; 

McDonald et al., 2020). Recent studies have found 

that animals that down-regulated immune genes 

tolerated Bd infections better, and highly suscep-

tible individuals significantly upregulated immune 

responses (Savage et al., 2020). These results 

suggest that immunopathology is a component 

of Bd susceptibility. Amphibian immune response 

reviews are available (chytridiomycosis: Grogan et 

al., 2018, 2020; ranaviruses: Grayfer et al., 2015).

Improvements in our understanding of amphibian 

immunity have applications for disease 

management and mitigation, for example, 

selective breeding for genetically resistant or 

tolerant individuals, or development of vaccines 

that prime immune responses (Table 6.2). Vaccines 

against Bd have shown mixed success (e.g. Stice 

& Briggs, 2010), perhaps because Bd-produced 

toxins inhibit amphibian adaptive immune 

response (Fites et al., 2013). Ranavirus vaccine 

trials, however, have shown promising results 

(Chen et al., 2018; Zhou et al., 2017).

Host-associated microbiomes

Host defences also include resident symbiotic 

bacteria, fungi and other micro-eukaryotes living 

on/in hosts, collectively called the host-associated 

microbiome. Mounting evidence suggests these 

communities play a role in disease dynamics 

(Jiménez & Sommer, 2016). High-throughput 

sequencing has enabled characterisations of 

microbial communities of diverse amphibians, 

enhancing our ability to understand the protective 

role these communities play (Kueneman et al., 

2019). Thousands of bacteria have been cultured 

from amphibian skin and tested for inhibition 

against Bd and Bsal pathogens in vitro (Bletz et 

al., 2017; Woodhams et al., 2015). Bd and Bsal 

may induce shifts in the microbiome (Bates et 

al., 2019; Bletz et al., 2018; Jani & Briggs, 2014), 

and microbiome composition may predict disease 

susceptibility (Becker et al., 2015). Populations 

with higher proportions of frogs with Bd-inhibiting 

skin bacteria may persist through Bd emergence 

(Lam et al., 2010; Woodhams et al., 2007). Recent 

studies have explored the “mycobiome” (Kearns 

et al., 2017) as well as the full microeukaryotic 

community (Kueneman et al., 2016b), and how 

these communities interact with bacteria (Belasen 

et al., 2021). Skin and gut bacterial microbiomes 

have also been associated with ranavirus suscep-

tibility in laboratory and field studies (Harrison 

et al., 2019; Warne, Kirschman & Zeglin, 2019). 

Modulating host immunity through probiotic 

bioaugmentation of hosts or their environments 

has been proposed as a disease mitigation 

strategy to capitalise on the role of these microbial 

communities (Table 6.2, reviewed in Bletz (2013) 

and Rebollar et al. (2016)).
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Table 6.2: Overview of amphibian disease mitigation interventions targeting amphibian hosts

Intervention Evidence In situ examples

Treatment of the host directly with 
antifungals, antibiotics, or 
deworming agents

Treating hosts directly for the pathogen 
are widely used in veterinary medicine 
(Baitchman & Pessier, 2013; Wright & 
Whitaker, 2001), but they are mostly 
applicable in controlled settings and do 
not prevent reinfection.

Cascades frogs treated with itraconazole 
and released back into natural ponds 
showed reduced Bd pathogen burden 
and increased over-winter survival (Hardy 
et al., 2015). Treatment of mountain 
chickens for Bd using itraconazole without 
environmental pathogen reduction had 
only short-term benefits (Hudson et al., 
2016a).

Treatment of host and translocation to 
disease-free refuge, or disinfection of 
environment prior to reintroduction

Disinfectants can be applied directly 
to the environment with varying 
environmental impacts (Lammens, 
Martel & Pasmans, 2021; 
von Rütte et al., 2009).

Successful at controlling Bd on the 
island of Mallorca, with limited Mallorcan 
midwife toads and limited habitat 
(Garner et al., 2016). An attempt to 
create a Bd-free population of Archey’s 
frogs through translocation in New 
Zealand was unsuccessful (Linhoff et al., 
2021).

Translocation of individuals with 
resistant genotypes

Recovering amphibian populations that 
have evolved resistance or tolerance 
to disease could serve as founders for 
low-cost reintroductions to historical 
sites (Mendelson, Whitfield & Sredl, 
2019). Genetic markers may be difficult 
to identify as resistance traits may 
be associated with reduced gene 
expression (Savage et al., 2020).

Knapp et al. (2023) showed that 
translocations of mountain yellow 
legged frogs collected from recovering 
populations can allow population 
re-establishment in the face of ongoing 
Bd infection.

Selective breeding for 
resilience traits

The effectiveness of skin mucus 
secretions of frogs that survived a 
Bd epizootic became more inhibitory, 
providing evidence of natural selection 
that has the potential to be applied 
to captive populations (Scheele et al., 
2014; Voyles et al., 2018). 

Not attempted yet, due to high technical 
requirements, multigenerational 
timelines, and a need to better 
understand resistance phenotypes, 
mechanisms or genetic markers. If 
clear resistance-associated genes 
are identified, genetic engineering for 
resistance may be a further possibility 
as has been explored in American 
chestnuts (Newhouse et al., 2014).

Density reduction of hosts to 
reduce disease transmission

Contact rates were reduced in low 
density groups of newts, suggesting 
reduced density may reduce Bsal 
transmission and spread (Malagon et 
al., 2020). However, a field experiment 
found that Bd was effectively transmitted 
between tadpoles regardless of density 
(Rachowicz & Briggs, 2007).

Translocation of limited numbers of 
mountain yellow-legged frog tadpoles to 
create new low-density populations was 
unsuccessful at preventing outbreaks 
(Woodhams et al., 2011). It seems 
unlikely that deliberately reducing healthy 
threatened amphibian populations to 
reduce disease risk would be justified by 
experimental evidence.
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Intervention Evidence In situ examples

Increase population buffering capacity 
through head starting, captive-releases

Demographically, increasing recruitment 
rates compensates for disease-related 
mortality (Lampo, Senaris & Garcia, 
2017; Muths, Scherer & Pilliod, 2011; 
Scheele et al., 2014).

Populations of wild corroboree frogs 
declining due to Bd have been 
supplemented from captive populations 
and raised in predator-free enclosures to 
help sustain wild populations (Campbell 
et al., 1999; Linhoff et al., 2021). Head 
starting has helped to avoid extinctions 
and grow populations of agile frogs in the 
UK and northern leopard frogs in Canada 
(Linhoff et al., 2021), but has been 
unsuccessful at re-establishing breeding 
populations of Wyoming toads (Polasik et 
al., 2016). It is likely that success or failure 
of these efforts will be highly context-
specific, and more studies are needed.

Augmenting protective skin microbes 
using probiotics

Probiotics aim to boost host immunity 
in the mucosal environment through 
the addition of locally occurring, 
Bd-protective skin microbes to 
amphibians (Bletz et al., 2013). 
Experimental trials have given mixed 
results, some have been successful 
or partly successful (Bletz et al., 2018; 
Harris et al., 2009; Kueneman et al., 
2016a; Muletz et al., 2012), and others 
have been ineffective (Becker et al., 
2011; Becker et al., 2015; Woodhams 
et al., 2012).  One study that genetically 
modified a core skin microbe to produce 
antifungal metabolites did not confer 
disease protection (Becker et al., 2021).

One in situ field trial that augmented 
mountain yellow-legged frogs with 
Janthinobacterium lividum was 
associated with reduced Bd pathogen 
loads and improved survival after 
one season, but the population 
did not persist in the long term 
(Vredenburg, Briggs & Harris, 2011). 
Our understanding of the role of skin 
microbiomes and immune function 
is not yet developed enough to 
reliably manipulate microbiomes to 
impart a desired function, and further 
research is needed to understand the 
relationship between host, pathogen and 
microbiome.

Vaccines Effective ranavirus vaccines have been 
developed and used in Chinese giant 
salamanders (Chen et al., 2018; Zhou et 
al., 2017). Vaccinations for Bd, however, 
have been ineffective, or only weakly 
improve the ability to combat infection 
(Cashins et al., 2013; McMahon et 
al., 2014; Stice & Briggs, 2010), but 
recent attempts in Vegas Valley leopard 
frogs have demonstrated improved 
effectiveness of previous exposure 
conferring improved survival (Waddle et 
al., 2021).

Ranavirus vaccines have not been used 
in the field but have high potential, 
especially with long-lived species like 
giant salamanders. Whether effective 
Bd and Bsal vaccines can be developed 
remains unknown. Improved survivorship 
of adult mountain yellow legged frogs 
treated with itraconazole to clear Bd 
infections has been attributed to a 
possible acquired immune response 
from the initial infection (Knapp et al., 
2022). California red-legged frogs 
that were experimentally exposed and 
cleared from Bd prior to release, did not 
have reduced Bd loads or prevalence 
compared to controls (Adams et al., 
2022).
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Impacts of pathogen co-occurrence and 

co-infections

In the wild, multi-pathogen-parasite landscapes 

occur, including co-infections of ranavirus, Bd, 

and Bsal (Lötters et al., 2018; Warne et al., 2016; 

Whitfield et al., 2013). Where pathogens co-occur 

they can affect different subsets of the amphibian 

community. For example, ranavirus may have 

greater impacts at lower elevations while Bd has 

impacts at higher elevations (Rosa et al., 2017). 

Mortality and sublethal effects can be exacerbated 

by co-infections in some cases (Longo, Fleischer 

& Lips, 2019; McDonald et al., 2020); however, 

one recent study has suggested initial infection 

with low virulence Bd genotypes can shift Bsal 

infection dynamics (Greener et al., 2020).

Community-level factors

The biotic community can play a major role in 

determining disease outcomes, with important 

implications for disease management. As hosts 

vary in their susceptibility to the same pathogens, 

host community composition can determine 

whether a disease is enzootic or epizootic. 

For instance, with many immune or resistant 

hosts, the community may experience a dilution 

effect, whereby disease is kept to low, enzootic 

levels. Alternatively, if many reservoir (i.e. highly 

tolerant) hosts or super-shedders are present, 

higher pathogen burdens may build up, resulting 

in negative impacts on susceptible hosts. 

Introduced African clawed frogs and American 

bullfrogs, and US-native Pacific chorus frogs are 

considered reservoir hosts for Bd (Reeder, Pessier 

& Vredenburg, 2012), whereas various anuran and 

urodelan hosts, such as midwife toads and alpine 

newts, can be reservoir hosts for Bsal (Stegen et 

al., 2017). Non-amphibian hosts, such as crayfish 

or waterfowl, have been suggested for Bd and Bsal; 

however, evidence remains mixed (Betancourt-

Roman, O’Neil & James, 2016; McMahon et 

al., 2013; Van Rooij et al., 2015). For ranavirus, 

non-amphibian hosts are well-documented, 

including fish and turtles (Duffus et al., 2015).

Future steps & recommendations

Over the last 15 years of research on amphibian 

disease hosts, there has been an increased 

understanding of the need to move beyond 

correlating pathogen presence with decline; rather, 

it is necessary to associate pathogen presence with 

disease, and in turn disease with decline. 

Given high levels of intraspecific and interspecific 

variability in disease outcomes, broad predictive 

markers for susceptibility are needed. These may 

include genetic markers, mucosome components 

that combat skin pathogens, proportion of the 

microbiome that is inhibitory against pathogens, 

or other measurable factors. Development of 

predictive assays will require additional compar-

ative research and validation studies. Further 

understanding of factors associated with popula-

tions experiencing recovery as well as “cold spots” 

where disease outbreaks do not occur can advance 

development of targeted management methods. 

Further, basic biological studies are lacking to 

provide context to correlational and experimental 

patterns. Studies of cellular responses to infection 

would enhance understanding of immune markers 

or responses most relevant to surviving pathogen 

infection. An improved understanding of the roles 

of non-bacterial microbes in amphibian micro-

biomes may clarify impacts of microbiome variation 

over species, space, and time, and of employing 

probiotic treatments in nature. Given that 

co-infections can exacerbate disease outcomes, 

understanding interactions of the widespread, well-

studied pathogens featured in this review with more 

poorly studied pathogens and parasites will likely 

be important in effectively managing amphibian 

health broadly.

Environment

Environmental factors affect disease transmission 

and host-disease dynamics. Significant advances in 

understanding host-pathogen interactions with both 

abiotic and biotic environmental factors have been 

made in recent years. 
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Abiotic factors

Abiotic factors such as temperature, water, and 

altitude help explain spatiotemporal variability in 

amphibian pathogen occurrence (Brunner et al., 

2015; Olson et al., 2013; see also Table 6.3). For 

example, reported localities of fatal chytridiomy-

cosis are scarce, concentrated mainly in tropical 

regions of the Americas and Australia (Scheele et 

al., 2019a), and most ranaviral disease die-offs 

have been in temperate regions during warmer 

seasons (Price et al., 2019). Predicting disease 

impacts on amphibian populations, however, is 

challenging due to several interacting contexts 

(Blaustein et al., 2018). Furthermore, amphibian 

pathogens are a moving target, as amphibian trade 

(food, pets) spreads pathogens with panzootic 

potential (O’Hanlon et al., 2018) and climatic shifts 

may trigger new epizootic outbreaks (See Chapters 

3 and 7).

Temperature also can affect pathogen life history 

traits. Optimal in vitro temperature range for Bd is 

17–25oC (Piotrowski, Annis & Longcore, 2004), for 

Bsal is 10–15oC (Martel et al., 2013), and for rana-

virus is 20–28oC (Ariel et al., 2009). Experimental 

exposures of Bd strains to various thermal regimes 

in vitro showed that warmer temperatures may 

increase zoospore production within the host, but 

decrease zoospore viability in aquatic environments 

(Woodhams et al., 2008; Woodhams et al., 2012). 

Hence, Bd could have higher impact on popula-

tions under thermal conditions that are suboptimal 

for pathogen replication, if propagules remain 

viable outside their host for longer periods (Voyles, 

Rosenblum & Berger, 2011; Voyles et al., 2012). 

Models have shown free Bd zoospore persistence 

in the environment is a major determinant of the 

fate of host populations (Doddington et al., 2013; 

Louca, Lampo & Doebeli, 2014; Mitchell et al., 

2008). For ranavirus, a greater pathogenicity at 

warmer temperatures appears to be related to a 

faster viral replication (Brand et al., 2016).

Temperature effects on host immune systems are 

less clear. During host hibernation, the immune 

response involved in Bd clearance is impaired 

(Rollins-Smith, 2020), and hosts may be less 

effective at resisting disease after cold pulses 

(Greenspan et al., 2017a; Greenspan et al., 

2017b). Higher rates of Bd clearance in warmer 

environments have been attributed to increased 

amphibian skin sloughing, a mechanism that 

lowers infection burdens (Grogan et al., 2018), but 

repeated exposure to extreme heat also causes a 

corticosterone response characteristic of chronic 

stress that could suppress amphibian physiological 

endocrine sensitivity to pathogenic diseases 

(Narayan & Hero, 2014). Temperature variability 

itself affects amphibian immune responses; further 

investigation is needed (Raffel et al., 2006).

Chytridiomycosis tends to have greater impact and 

higher infection prevalence on highland populations 

in cooler habitats (Catenazzi, Lehr & Vredenburg, 

2014; Scheele et al., 2019a; Woodhams & Alford, 

2005). Warmer habitats have been proposed as 

thermal refuges where frogs are more likely to 

coexist with the fungus because Bd tends to grow 

sub-optimally (Puschendorf et al., 2009; Zumbado-

Ulate et al., 2014). Post-epizootic population 

recoveries have been more frequent in lowland 

than upland locations, supporting this hypothesis 

(Grogan et al., 2016; Lampo, Senaris & Garcia, 

2017; Phillott et al., 2013). Hosts are not always 

constrained passively to ambient conditions; if 

hosts can raise their body temperature by spending 

more time in microhabitats where temperature 

exceeds the pathogen’s optimum, amphibians can 

alter their infection risk (Richards-Zawacki, 2010; 

Rowley & Alford, 2013). However, recurring findings 

of conflicting correlations between prevalence, 

outbreaks, and climatic conditions (Ron, 2005) 

led to an examination of the effects of climatic 

conditions in terms of differential performance of 

the pathogen and its host relative to their thermal 

optima, an idea referred to as the thermal mismatch 

hypotheses (Cohen et al., 2017; Nowakowski et al., 

2016). Consequently, infection risk in ectotherms 

may change as the difference between host and 

pathogen environmental tolerances (i.e. tolerance 

mismatch) increases. Infection risk is expected to 

decrease, for example, if hosts can access thermal 

niche spaces suboptimal for Bd (Nowakowski et 
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al., 2016). Conversely, infection risk could increase 

if available temperatures shift away from host 

optimums (Cohen et al., 2019). 

Humidity and water availability also play a role in 

amphibian disease dynamics. Bd has severely 

impacted populations associated with perennial 

waters (Scheele et al., 2019a), but hydrological 

regimes also can affect other pathogen-host 

dynamics. Batrachochytrium fungi do not tolerate 

desiccation and water availability or humidity is 

fundamental for effective transmission, but Bd trans-

mission can increase during driest months when 

adults congregate near water sources (LaBumbard, 

Shepack & Catenazzi, 2020; Piovia-Scott et al., 

2011; Ruggeri et al., 2015). Also, Batrachochytrium 

fungi may persist 1-7 months in sediment or lake 

water (Johnson & Speare, 2003; Martel et al., 2013; 

Stegen et al., 2017) and ranavirus can survive for 

>30 days in sediments (Munro et al., 2016; Nazir, 

Spengler & Marschang, 2012). Hence, pathogens 

can persist after their hosts have been removed from 

their habitats. Models suggest that one of the most 

important mechanisms promoting Bd establishment 

and driving host populations to extinctions is its 

capacity to survive outside its host in water or 

humid substrates (Doddington et al., 2013; Louca, 

Lampo & Doebeli, 2014; Mitchell et al., 2008). Spatial 

distribution and Bd zoospore life expectancy in the 

environment is becoming more apparent at some 

US amphibian breeding sites (Chestnut et al., 2014), 

but dynamics in tropical stream environments and 

the relationship to environmental factors remains 

a knowledge gap. Recent development of eDNA 

sampling techniques will hopefully expand zoospore 

detectability across microhabitats for Bd (Hauck 

et al., 2019; Walker et al., 2007). For ranavirus, 

however, it should be noted that titres collected from 

eDNA samples may not correspond with infection 

levels in the amphibian hosts at the same site 

(Kaganer et al., 2021). 

Extreme climatic events also can impact fecundity, 

recruitment and survival of uninfected amphibians, 

undermining the ability of populations to offset 

disease-induced mortality and possibly tipping 

infection outcome from coexistence to extinction. 

Extended droughts can lead to breeding failure, 

and reduce post-metamorphic survival and adult 

recruitment (Cayuela et al., 2016; Richter et al., 

2003). Yet, post-epizootic recovery of remnant 

populations from several regions where Bd is highly 

pathogenic has been linked to a high recruitment 

of healthy adults (Lampo, Senaris & Garcia, 2017; 

Muths, Scherer & Pilliod, 2011; Scheele et al., 2015). 

Similarly, in amphibian populations challenged by 

ranavirus, recruitment success was better explained 

by hydroperiod length than viral presence or other 

contaminants (Smalling et al., 2019). This suggests 

that population resilience to disease-associated 

impact is highly dependent on climatic conditions, 

and climate plays an important role in the probability 

of post-epizootic recovery.

 

Identifying conditions in which amphibian 

populations can coexist with infection opens a 

promising avenue for long-term conservation of 

wild populations threatened by chytridiomycosis 

(Hettyey et al., 2019). Although several interventions 

are proposed that modify temperature, hydrological 

regimes or water quality, manipulate host microbial 

communities, or use micro-predators as biocontrol 

agents for reducing pathogen survival (Table 6.3), 

field tests have lagged.

Biotic factors

Amphibian pathogens are part of complex aquatic 

communities, with natural predators and parasites. 

Community-level biotic factors can lead to density- 

and trait-mediated trophic cascades in the broader 

aquatic ecosystem, inclusive of other microbiota 

(Harjoe et al., 2022). Some aquatic predators of 

chytrid zoospores are water fleas (Cladocera), 

copepods (Copepoda), and seed shrimp (Ostracoda) 

(Woodhams et al., 2011). Higher abundances of 

protozoans and microscopic metazoans reduced 

Bd zoospores amounts at amphibian breeding 

sites in the Pyrenees (Schmeller et al., 2014). 

Zoospore viability inversely correlated with Bd 

infection prevalence, suggesting that Bd predatory 

microfauna affected Bd-host dynamics (Schmeller 

et al., 2014). Mesocosm experiments using Daphnia 
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Table 6.3: Potential disease interventions that manipulate environmental factors

Intervention Evidence In situ examples

Prune overhanging 

vegetation to increase 

terrestrial or aquatic 

temperatures

Frogs that select habitats with higher temperatures 

reduce their Bd infections (Richards-Zawacki, 2010; 

Rowley & Alford, 2013). Canopy modification to 

create warmer microclimates is postulated as a tool 

to permit coexistence with the pathogen (Scheele et 

al., 2019b). Bd prevalence declines associated with 

cyclone-canopy disturbance in Australia supports 

this hypothesis (Roznik et al., 2015).

Riparian tree canopies in Australia were trimmed 

to reduce the suitability of the habitat for Bd at 

spotted tree frog release sites (Scheele et al., 

2014), but the canopy pruning was discontinued 

(B.C. Scheele, personal communication).

Translocations to 

environmental refugia

Release captive-bred animals in warmer parts of 

their range that may act as environmental refugia or 

disease-free refuges (Scheele et al., 2014). Timing 

of releases to coincide with low Bd prevalence may 

also influence post-release success.

A translocation of yellow-legged frogs to colder, 

higher elevations postulated to limit Bd in frogs, 

but did not work (Knapp et al., 2011).

Artificial heating stations Natural thermal springs act as Bd refugia for frogs 

(Savage et al., 2011), and provision of artificial 

heating stations in situ are postulated as a mitigation 

tool (Hettyey et al., 2019).

The Mountain Chicken Recovery Program is 

conducting release trials using artificially heated 

pools as one Bd-mitigation strategy (Dagano, 

2018).

Add fungicides or salts 

to ponds to reduce 

pathogen loads

Adding salt to experimental ponds reduced Bd 

transmission between infected and uninfected 

animals (Clulow et al., 2018). Addition of 

commercially available fungicides to mesocosms 

reduced Bd prevalence and load, but also affected 

tadpole growth rates (Geiger & Schmidt, 2013; 

Hanlon, Kerby & Parris, 2012).

Addition of salt to ponds where captive-bred green 

and bell frog tadpoles were released improved 

survival and reduced Bd prevalence (Stockwell 

et al., 2014). A multi-year study in Mallorca found 

that pond drying, environmental disinfection, and 

fungicidal treatment of resident midwife toads 

eliminated Bd for at least 2 yrs post mitigation 

efforts (Bosch et al., 2015). 

Increase population 

buffering capacity through 

habitat improvements or 

predator removal

This strategy aims to improve habitat, or optimise 

hydroperiods to increase recruitment in order to 

compensate for disease-related losses (Scheele et 

al., 2014). Ideally habitat improvement will occur 

proactively while populations are still resilient 

(Sterrett et al., 2019).

Construction of additional breeding ponds 

for Puerto Rican crested toads have been 

partly successful and increased the number of 

populations of this threatened species (Linhoff et 

al., 2021). Creation of habitats that excluded fish 

helped increase green and gold bell frogs even in 

the presence of Bd (Beranek et al., 2021).

Microbial bioaugmentation 

of substrate

Experimental augmentation of soil with bacteria 

that produce antifungal metabolites prevented Bd 

colonisation of amphibian skin (Muletz et al., 2012).

Not tested yet

Micropredator 

augmentation

Zooplankton as a micropredators of Bd, and 

experimentally reduce Bd zoospores and transmission 

of Bd to tadpoles (Schmeller et al., 2014).

Not tested yet
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further corroborated the idea that microfauna can 

reduce Bd zoospore counts in lentic habitats (Buck, 

Truong & Blaustein, 2011; Hamilton, Richardson & 

Anholt, 2012). Bsal is similarly affected by aquatic 

micropredators, but the existence of an encysted 

zoospore stage makes them less vulnerable (Stegen 

et al., 2017). 

Ranaviruses have cross-taxonomic host boundaries 

(Brenes et al., 2014; Duffus et al., 2008; Schock 

et al., 2008), and are further transmitted through 

scavenging, direct contact, and contact with 

contaminated water (Blaustein et al., 2018). Host 

predation can reduce ranavirus infection rates 

because predators tend to attack individuals who 

are weak or have altered avoidance behaviours; 

some pathogens including ranaviruses can alter 

tadpole behaviour and result in greater predation of 

infected individuals, leading to ‘healthier but smaller 

herds’ (DeBlieux & Hoverman, 2019).

Future steps & recommendations

While correlations between some environmental 

factors and mechanisms governing the infection 

dynamics are now well established, predicting and 

mitigating the impact of infections on amphibian 

populations continues to be a challenge. The relative 

contributions of mechanisms of transmission and 

disease tolerance in promoting pathogen-host 

coexistence appear to be context-dependent and 

field data are often scarce. Also, the role of biotic 

interactions in the infection outcome remains poorly 

understood. Future investigation and management 

of amphibian diseases will need to consider the 

context-dependence of interactions and address 

the complexities arising from multispecies and 

multiscale interactions. Context modelling can be 

useful for a rapid assessment of effective strategies, 

given the urge of mitigating amphibian diseases.

Human dimensions

Human dimensions in amphibian diseases are 

multifaceted including knowledge discovery through 

research and monitoring, inadvertent pathogen 

transmission, and direct conservation, management 

and policy actions (Olson & Pilliod, 2021).

Trade

International and national policies focus on 

reducing human-mediated transmission. For 

example, the recently proposed Asian origin of Bd 

and Bsal has raised concerns for risk of interna-

tional transmission within trade markets (Carvalho, 

Becker & Toledo, 2017; Nguyen et al., 2017; 

O’Hanlon et al., 2018). In 2008, chytridiomycosis 

was added to the OIE’s list of notifiable diseases 

due to increasing evidence of Bd spread through 

live amphibian trade. Both chytrid fungi and rana-

virus are now OIE listed as notifiable diseases (OIE, 

2020; Schloegel et al., 2009). In 2018, a motion was 

passed by the Convention on Biological Diversity 

(CBD) for member states to adopt measures 

to reduce risk of invasive alien species moving 

unintentionally in pathways associated with trade of 

live organisms (CBD, 2018).

Clean trade is a priority for immediate action across 

wildlife species due to rapidly increasing pathogen 

concerns for both wildlife and potential spill over to 

humans (Fisher et al., 2018; Kolby, 2020). Research 

advances in rapid and cost-effective pathogen 

detection and procedures for biosecure captive-

animal handling in trade markets are increasing 

the feasibility of taking measures to reduce risk 

of spreading diseases (e.g. Brunner et al., 2019; 

Gray et al., 2018). However, a web of regulatory 

authorities with vague authority and overlapping 

regulations makes it challenging to make progress 

in effecting policy changes, and is compounded by 

a lack of funding, capacity and regulatory backing 

that has slowed progress in developing clean-trade 

markets (see Chapter 7 for more information on 

policy efforts).

Recognising the role of trade in spreading diseases 

is important but getting ahead of the problem and 

preventing spread is likely the most cost-effective 

action. Bsal is one example of a pathogen known 

only to occur in parts of Europe, with a likely east 
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Asian origin (Martel et al., 2014). Scientists called 

for action to prevent its spread to North America 

which is home to exceptional salamander species 

richness that is naive to this pathogen (Gray et 

al., 2015). In June 2015, a US Geological Survey 

workshop in Colorado, USA convened to form 

a Bsal Task Force with eight working groups to 

address response and control, surveillance and 

monitoring, diagnostics, communication and 

outreach, clean trade, research and decision 

science, and data management (North American 

Bsal Task Force, 2022). These emphasis areas each 

help to get ahead of disease impacts.

Surveillance and monitoring

In particular, pathogen surveillance in both captive 

and wild animals has been needed to understand 

geographic and taxonomic patterns of disease 

occurrence, the potential scope of trade effects, and 

the direction of biosecurity needs. However, surveil-

lance and monitoring to date has been primarily 

focused in North America, Europe and Australia, 

while many amphibian-rich regions lack capacity 

for widespread monitoring (although see National 

Monitoring Initiative in Madagascar (Bletz et al., 

2015; Weldon et al., 2013)). With severe documented 

Bd impacts, Australia was one of the first countries 

to establish survey protocols for national surveillance 

(Skerratt et al., 2008). Bsal detection in captive 

amphibians was reported in Europe (Fitzpatrick et 

al., 2018; Sabino-Pinto et al., 2018), but no Bsal 

detections were reported in captive samples in North 

America (Klocke et al., 2017), which can greatly 

inform usefulness of biosecurity policies such as 

a trade moratorium. Trade restrictions continue 

to be warranted as Bsal surveillance in North 

America has failed to detect it to date (Waddle et 

al., 2020). Surveillance of both Bd and ranavirus has 

accelerated rapidly in the last decade, supporting 

cross-jurisdiction concerns for amphibian disease 

threats. Global Bd and ranavirus community open-

access databases are available with recent website 

updates. Worldwide, Bd has been detected in 1,375 

of 2,525 (55%) species sampled, from 93 of 134 

(69%) countries (Olson et al., 2021a; database: 

amphibiandisease.org). Metadata analyses using 

these data have aided understanding of disease 

threats and host-pathogen-environment associa-

tions. Ranavirus surveillance reports are dominated 

by amphibians (63 genera; vs. 27 fish and 34 reptile 

genera) in North America and Europe, with a history 

of detections related to mortality events, some of 

which were in farm production settings (Brunner et 

al., 2021; see database: brunnerlab.shinyapps.io/

GRRS_Interactive/).

Decision science & proactive planning

Decision science is a developing discipline to facil-

itate manager and policy maker decision-making 

processes. Importantly, decision science can aid 

in identifying models that can inform management 

decisions, e.g. in predicting outcomes of alternative 

actions in preparing for and initiating responses 

to disease outbreaks (e.g. Canessa et al., 2018; 

DiRenzo & Campbell Grant, 2019; Hopkins, 2018). 

Proactive planning can be further aided by the 

development of Incident Command Systems 

(Box 6.1). An Incident Command System is a 

standardised approach to the command, control, 

and coordination of response providing a common 

hierarchy within which responders from all stake-

holders can be effective.

Hopkins (2018) showcased the importance of 

development of a USA incident command system 

through scenario planning exercises. This work 

highlighted differing trajectories of amphibian die-off 

responses due to land ownership (US National Park 

System lands, US Forest Service lands, and neigh-

bouring tribal lands), and stall points in responses 

due to national, state, and local permissions required 

for actions such as implementing ground-disturbing 

activities or chemical applications in field settings. 

The North American Bsal Task Force response and 

control working group has also outlined a Response 

Plan Template including an outline of ICS (salaman-

derfungus.org). Importantly, these systems can and 

should be defined proactively at local, regional and 

national scales to expedite effective response and 

management actions.

http://amphibiandisease.org
http://brunnerlab.shinyapps.io/GRRS_Interactive/
http://brunnerlab.shinyapps.io/GRRS_Interactive/
https://www.salamanderfungus.org/
https://www.salamanderfungus.org/
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Disease control strategies

Biosecurity protocols outline basic steps to 

reduce amphibian pathogen transmission in both 

captive (Brunner, 2020; Gray et al., 2015; Pessier & 

Mendelson, 2017) and field situations (Gray et al., 

2018; Phillott et al., 2010). Biosecurity measures 

range from between-site hygiene measures to 

prevent pathogen transmission in field situations 

(Health et al., 2018; Julian et al., 2020; Olson et 

al., 2021b), to between-individual precautions 

(Cashins, Alford & Skerratt, 2008; Greer et al., 

2009), while stringent quarantine and disinfection 

measures can prevent disease outbreaks in both 

captive and field situations (Pessier & Mendelson, 

2017). Australia has developed national guidelines 

for intra- and inter-state implementation of hygiene 

protocols to prevent Bd spread (Commonwealth of 

Australia, 2016).

Disease management strategies beyond bios-

ecurity protocols have developed considerably 

in the last two decades. Garner et al. (2016) 

and Thomas et al.( 2019) reviewed alternative 

Incident 
Command 

System 
(ICS)

Develop Incident 
Command System 

with possible 
members 
including:

Private landowner (if on or near private lands) or local representative
State agency (e.g., Department of Wildlife: state species authority)
Federal agency (e.g., US Department of Interior: policy and endangered species oversight)
Tribal representative (if near Native American lands; if on tribal lands, process is 
at their discretion)
Host and disease species expert(s)
Public relations specialist

Immediate 
actions

Simultaneous 
initial tasks: 

Interagency agreements for incident command structure
Initiate diagnostics to confirm pathogen
Contain area and elevate biosecurity to forestall disease transmission
Initiate surveys to confirm host species occurrences and infection status

Initiate communication plan for public awareness and outreach

Continuation 
of actions and 

adaptive 
management

Continuation of 
actions to 
develop 

full response:

Assess treatment methods for biotic and abiotic containment for manager 
decision making
Develop alternative actions for hosts (rare, common species) and environment
Surveillance plan development, short and long term
Research plan development, short and long term
Communication: law enforcement, education, and outreach
Adaptive management as new information emerges

1

2

3

4

5

6

1

2

3

4

5

1

2

3

4

5

6

Box 6.1: Incident Command System for rapid disease response

An Incident Command System (ICS) is a disaster management system that has been applied to 

emergency response situations such as for human hazards including wildfire, hurricanes, earthquakes, 

chemical spills, and search-and-rescue operations, invasive species and disease outbreaks. 

Development of An Incident Command System (ICS) for amphibian disease outbreaks can facilitate 

an effective response through immediate and cascading follow-up actions, including assembly of a 

command team, biosecurity implementation, survey and diagnostics, development of effective response 

actions, and active communication with stakeholders. Hopkins (2018) described an Incident Command 

System for responses to amphibian die-off scenarios from hypothetical outbreaks of chytridiomycosis 

due the chytrid fungus Batrachochytrium salamandrivorans (Bsal) in the salamander biodiversity hotspot 

of the Appalachian Mountains in the eastern United States.
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strategies in the toolbox of approaches to mitigate 

pathogen outbreaks, many of which are in active 

research-and-development at this time, including: 

habitat modification, chemical treatments, vaccines, 

probiotics (Tables 6.2 and 6.3, see also Smith & 

Sutherland (2014) for evidence of effectiveness for 

disease control and biosecurity practices).

AmphibianArk (www.amphibianark.org) was 

created in 2006 to carry out ex situ components 

of the IUCN SSC Amphibian Specialist Group’s 

Amphibian Conservation Action Plan (ACAP). Its 

vision was to leverage existing captive husbandry 

resources in zoos and aquaria around the world to 

meaningful ex situ conservation efforts, and it has 

made great strides in training staff and building 

capacity, conducting prioritisation and providing 

funding to support ex situ amphibian conservation 

efforts globally (McGregor Reid & Zippel, 2008). 

It now spans more than 60 organisations in 28 

countries working to conserve 115 anuran species 

(Gratwicke & Murphy, 2016; Harding, Griffiths & 

Pavajeau, 2016). Whereas captive breeding efforts 

do not directly mitigate the threats, and have had 

mixed success (Harding, Griffiths & Pavajeau, 

2016), they have created numerous opportunities to 

conduct integrated research (Hudson et al., 2016b; 

Lewis et al., 2019; Skerratt et al., 2016). Linhoff 

et al. (2021) provided guidelines for amphibian 

reintroductions and translocations, the final step in 

many ex situ efforts (See Chapters 11 and 14 for 

more information on these topics).

Community engagement

Lastly, engaging people and communities is a 

necessary component of mitigating disease spread. 

Although this takes many forms, important factors 

in this sociological component include: 

1) Accelerated scientist networking and collabora-

tions to increase the global pace and scope of 

research and surveillance.

2) Mobilising funding to build capacity for an 

effective response.

3) Developing conservation partnerships to address 

common disease management goals.

4) Developing a communication strategy to 

increase targeted communication with defined 

audiences including the public, environmental 

groups, and policy makers, natural resource 

managers and disease specialists. 

The Herp-Disease-Alert-System (HDAS; 

herp_disease_alert@parcplace.org) implemented 

by PARC (Partners in Amphibian and Reptile 

Conservation) in North America is an example of 

a public-management networking system gaining 

success for rapid disease responses that routes 

information to the correct authority for follow-up 

action. The Human Dimension may be the greatest 

challenge yet to mitigate amphibian disease 

threats, as the feral dynamics of the Anthropocene 

are all-encompassing, affecting multiple biodiversity 

threat factors (Tsing et al., 2020).

In summary, we recommend the following actions:

Surveillance 

Build global capacity to conduct routine diagnostic 

testing and examination of amphibians for both 

known and novel emerging diseases. 

Heightened vigilance for sick and dead amphibians, 

especially given symptom similarity between 

endemic and novel disease threats. 

Develop inexpensive, sensitive and accurate 

field-tests. 

Research 

Move beyond correlating pathogen presence with 

decline; focus on causation. 

Develop broad predictive markers or indicators 

for susceptibility to prioritise species conser-

vation actions. 

http://www.amphibianark.org
http://herp_disease_alert@parcplace.org
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Understand why some species and populations 

are recovering as well as how disease “cold 

spots” persist. 

Study cellular responses to infection to enhance 

understanding of immune function in relation 

to susceptibility. 

Study pathogen interactions with the microbiome, 

host immune system, and poorly-studied pathogens 

and parasites.

Identify environmental conditions in which 

amphibian populations can coexist with pathogens.

Management & Policy

Continue to examine and develop novel ways to 

mitigate diseases both in captive settings and in 

the wild, particularly in field settings. 

Facilitate cross-disciplinary connections between 

land managers, decision scientists, and ecologists 

to facilitate management decisions rooted in 

sound science. 

Use adaptive management frameworks to 

make detailed observations, learn and improve 

management interventions in a field context. 

Engage relevant land management agencies and 

government authorities in amphibian, and more 

broadly, wildlife disease issues.
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Crocodile newt (Tylototriton sp.) being swabbed as part of a screening survey of captive salamanders in the USA for Bsal (Klocke et al 2017). Over three quarters 
of Tylototriton species are classified as threatened with extinction on the Red List. © Brian Gratwicke
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